A Mitotic Phosphorylation Feedback Network Connects Cdk1, Plk1, 53BP1, and Chk2 to Inactivate the G2/M DNA Damage Checkpoint
نویسندگان
چکیده
DNA damage checkpoints arrest cell cycle progression to facilitate DNA repair. The ability to survive genotoxic insults depends not only on the initiation of cell cycle checkpoints but also on checkpoint maintenance. While activation of DNA damage checkpoints has been studied extensively, molecular mechanisms involved in sustaining and ultimately inactivating cell cycle checkpoints are largely unknown. Here, we explored feedback mechanisms that control the maintenance and termination of checkpoint function by computationally identifying an evolutionary conserved mitotic phosphorylation network within the DNA damage response. We demonstrate that the non-enzymatic checkpoint adaptor protein 53BP1 is an in vivo target of the cell cycle kinases Cyclin-dependent kinase-1 and Polo-like kinase-1 (Plk1). We show that Plk1 binds 53BP1 during mitosis and that this interaction is required for proper inactivation of the DNA damage checkpoint. 53BP1 mutants that are unable to bind Plk1 fail to restart the cell cycle after ionizing radiation-mediated cell cycle arrest. Importantly, we show that Plk1 also phosphorylates the 53BP1-binding checkpoint kinase Chk2 to inactivate its FHA domain and inhibit its kinase activity in mammalian cells. Thus, a mitotic kinase-mediated negative feedback loop regulates the ATM-Chk2 branch of the DNA damage signaling network by phosphorylating conserved sites in 53BP1 and Chk2 to inactivate checkpoint signaling and control checkpoint duration.
منابع مشابه
Polo-like kinase 1 inhibits DNA damage response during mitosis
In response to genotoxic stress, cells protect their genome integrity by activation of a conserved DNA damage response (DDR) pathway that coordinates DNA repair and progression through the cell cycle. Extensive modification of the chromatin flanking the DNA lesion by ATM kinase and RNF8/RNF168 ubiquitin ligases enables recruitment of various repair factors. Among them BRCA1 and 53BP1 are requir...
متن کاملPolo-like kinase 1 and Chk2 interact and co-localize to centrosomes and the midbody.
Chk2 is a protein kinase intermediary in DNA damage checkpoint pathways. DNA damage induces phosphorylation of Chk2 at multiple sites concomitant with activation. Chk2 phosphorylated at Thr-68 is found in nuclear foci at sites of DNA damage (1). We report here that Chk2 phosphorylated at Thr-68 and Thr-26 or Ser-28 is localized to centrosomes and midbodies in the absence of DNA damage. In a sea...
متن کاملSTAT-1 facilitates the ATM activated checkpoint pathway following DNA damage.
STAT-1 plays a role in mediating stress responses to various stimuli and has also been implied to be a tumour suppressor. Here, we report that STAT-1-deficient cells have defects both in intra-S-phase and G2-M checkpoints in response to DNA damage. Interestingly, STAT-1-deficient cells showed reduced Chk2 phosphorylation on threonine 68 (Chk2(-T68)) following DNA damage, suggesting that STAT-1 ...
متن کاملG2 checkpoint abrogators as anticancer drugs.
Many conventional anticancer treatments kill cells irrespective of whether they are normal or cancerous, so patients suffer from adverse side effects due to the loss of healthy cells. Anticancer insights derived from cell cycle research has given birth to the idea of cell cycle G2 checkpoint abrogation as a cancer cell specific therapy, based on the discovery that many cancer cells have a defec...
متن کاملLATS1/WARTS phosphorylates MYPT1 to counteract PLK1 and regulate mammalian mitotic progression
In the mitotic exit network of budding yeast, Dbf2 kinase phosphorylates and regulates Cdc14 phosphatase. In contrast, no phosphatase substrates of LATS1/WARTS kinase, the mammalian equivalent of Dbf2, has been reported. To address this discrepancy, we performed phosphoproteomic screening using LATS1 kinase. Screening identified MYPT1 (myosin phosphatase-targeting subunit 1) as a new substrate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2010